2018世界人工智能蓝皮书:AI+12个产业发展应用

来源:中国信通院与Gartner联合编制《 2018世界人工智能产业发展蓝皮书》、技需网


全球AI企业


1
企业结构


从全球范围来看,AI企业主要集中在AI+(各个垂直领域)、大数据和数据服务、视觉、智能机器人领域。其中,AI+企业主要集中在商业、医疗和金融领域。


从中国来看,各垂直领域的AI企业同样集中。在各类垂直行业中,AI渗透较多的包括医疗、金融、商业、教育和安防等领域。



2
企业规模


截止2018年上半年,在全球范围内共监测到4998AI企业。

其中美国2039家世界第一,其次是中国1040家(不含港澳台地区)。


▲全球AI企业分布


从成立时间来看,AI创业潮集中在2014到2016年。


▲AI企业成立时间



3
企业区域


从城市维度来看,AI企业数量TOP20的城市中,美国占9个,中国4个,加拿大3个。其中,北京成为AI企业数量最多的城市,有412家企业。


▲全球AI企业数量TOP20城市



02
产业发展



1
产业发展技术


>>>>

(1)智能硬件


智能传感器和智能芯片是智能硬件的重要组成部分。如果说只能芯片是AI的中枢大脑,那么智能传感器就属于分布着神经末梢的神经元。与传统硬件不同的是,智能传感器是将传统传感器,微处理器及相关电力一体化,形成的具有初级感知处理能力的管对独立的智能处理单元。


2017年智能传感器全球市场价值为269.06亿美元,预计到2023年总市场规模达到706.17亿美元,预测期内复合增长率17.45%。


全球智能硬件市场,霍尼韦尔、BOSCH、ABB等国际巨头全面布局智能传感器的多种产品类型;在中国,也涌现了汇顶科技的指纹传感器,昆仑海岸的力传感器,但产品布局相对单一。


▲全球智能硬件领域典型企业



>>>>

(2)机器视觉技术


相对于传统视觉技术,人工智能赋能机器视觉技术,使其初步具备了 类似人类对图像特征分级识别的视觉感知与认知机理,其具有速度快、精度高、准确性高等一系列优点。


从技术能力上看,其主要实现产业应用中对图像或视频内物体/场景识别、分类、定位、检测、图像分割等功能的需求,因此被广泛应用于实现视频监控、自动驾驶、车辆/人脸识别、医疗影像分析、机器人自主导航、工业自动化系统、航空及遥感测量等领域。 MarketsandMarkets报告显示: 2017 年基于人工智能的计算机视觉全球市场规模为 23.7 亿美元,预计 2023 年会达到 253.2 亿美元。预测期 (2018-2023) 内复合年增长率 47.54%。根据前瞻产业研究院报告显示, 2017 年中国计算机


视觉市场规模为 68 亿元,预计 2020 年市场规模达到 780 亿元,年均复合增长率达 125.5%。


随着人工智能技术与实体产业的不断融合发展,计算机视觉算法的图像识别能力越来越强,各国也陆续涌现出了一大批优秀的计算机视觉公司。在美国,有亚马逊、谷歌、微软、 Facebook 等一批跨国科技企业呈现出从基础层、技术层到应用层的全产业布局的特征;也有一些初创公司专注局部应用领域,诸如 Cape Analytics 根据住宅航拍照片实现智能估值, Steam、 Oculus Home 和 Viveport 成为三大主流 VR 内容分发平台。在中国,一些计算机视觉顶级企业技术专家更多是名门之后,相关产业也已有多年积累,例如商汤科技当前正在为各大智能手机厂商提供 AI+ 拍摄、 AR 特效与 AI 身份验证等功能服务;格灵深瞳同时专注视觉算法技术和嵌入式硬件研发技术; Yi+ 更多的是为商业视觉内容提供智能化分析与推荐服务,云从科技、旷视科技、依图科技等企业也有不同布局。


▲ 全球机器视觉领域典型企业



>>>>

(3) 智能语音技术


智能语音技术是一种可以实现将文本或命令与语音信号相互智能转化的技术,其主要包含语音识别与语音合成。语音识别就好比“机器的听觉系统”,通过识别和理解,把语音信号转变为相应的文本或命令。语音合成就好比“机器的发音系统”,让机器通过阅读相应的文本或命令,将其转化为个性化的语音信号。智能语音技术因其可以实现人机语音交互、语音控制、声纹识别等功能,被广泛应用于智能音箱、语音助手等领域。


2017 年,全球智能语音市场规模为 110.3 亿美元,同比增长 30%。 2017 年中国智能语音市场规模达到 105.7 亿元,与 2016 年相比增长 70%。随着智能语音应用产业的拓展,市场需求增大,预计 2018 年中国智能语音市场规模将进一步增长,达到 159.7 亿元。


▲全球智能语音领域典型企业



>>>>

(4)自然语言处理


自然语言处理包含了多种多样的研究方向,其主要包括自然语言理解和自然语言生成。通俗的说,前者是实现计算机“理解”自然语言文本思想或意图;后者是实现计算机用自然语言文本“表述”思想或意图。从应用上看,包括机器翻译、舆情监测、自动摘要、观点提取、字幕生成、文本分类、问题回答 (Q&A)、文本语义比对等等。


全球自然语言处理市场规模预计将从 2016 年的 76.3 亿美元增长到 2021 年的 160.7 亿美元,复合年增长率 16.1%。《中国人工智能发展报告 2018》报告显示: 2017 年中国人工智能市场规模达到 237 亿元,其中自然语言处理市场占比 21%,也就是 49.77 亿元。目前,已经有许多相关的成熟技术应用产品。


▲全球自然语言处理领域典型企业



2
产业发展应用


>>>>

(1)AI+ 医疗


AI 技术赋能医疗健康领域,使得医疗机构和人员的工作效率得到显著提高,医疗成本大幅降低,并且可以使人们做到科学有效的日常检测预防,更好地管理自身健康。


近几年, AI+ 医疗健康位列 AI+ 垂直应用最热门的领域之一。从应用角度看,智能医疗主要包括医学研究、制药研发、智能诊疗以及家庭健康管理等方面。从技术细分角度看,主要包括使用机器学习技术实现药物性能、晶型预测、基因测序预测等;使用智能语音与自然语言处理技术实现电子病历、智能问诊、导诊等;使用机器视觉技术实现医学图像识别、病灶识别、皮肤病自检等。据麦肯锡预测,到 2025 年,全球智能医疗行业规模将达到总 254亿美元,约占全球人工智能市场总值的 1/5。中国正处于医疗人工智能的风口,前瞻产业研究院数据显示, 2017 年中国医疗人工智能市场规模超过 130 亿元,并有望在 2018 年达到 200 亿元,医疗人工智能空间广阔。


▲全球智能医疗领域典型企业



>>>>

(2)AI+ 金融


AI技术赋能金融领域,从应用角度看,主要包括智能投顾、征信风控、金融搜索引擎、保险、身份验证和智能客服等。金融是最依赖数据的行业之一,人工智能技术与金融行业相融合,通过基于大数据的人工智能技术驱动金融科技智能化升级。在前台,可以用于为用户提供更舒适、便利与安全的服务;在中台,可以为金融业务中的交易、授信与分析等提供决策辅助功能;在后台,可以针对各类风险改进金融系统。在后台,可以提高金融系统对各类风险的识别、预警与防控能力。总而言之,人工智能技术将深度重构当前金融业生态格局,使金融服务(银行、保险、理财、借贷、投资等方面)更加地人性化与智能化。


全球金融服务领域的信息利用率仅有 26%,在各行业属于偏低水平。根据MarketsandMarkets 报告显示:人工智能在金融科技的全球市场规模预计将从 2017 年的 13.38 亿美元增长到 2022 年的 73.06 亿美元,复合年增长率 40.4%。《新一代人工智能发展白皮书 (2017)》 预测, 2020年中国智能金融产业规模将达到 8 亿美元。


▲全球智能金融领域典型企业



>>>>

(3)AI+ 零售


AI 技术赋能零售行业,智能零售以大数据和智能技术驱动市场零售新业态,优化从生产、流通到销售的全产业链资源配置与效率,从而实现产业服务与效能的智能化升级。其商业化应用包括智能营销推荐、智能支付系统、智能客服、无人仓/无人车、无人店、智能配送等等。


MarketandMarkets 报告显示:全球智能零售市场预计将从 2018 年的130.7 亿美元增长到 2023 年的 385.1 亿美元,预测期 (2018-2023) 内复合年增长率为 24.12%。在中国,国家统计局数据显示, 2017 年底,中国社会消费品零售总额达到 366,262 亿元,增长 10.2%。罗兰贝格预测,到2030 年,人工智能技术将为中国零售行业带去约 4,200 亿元人民币的降本与增益价值。


▲全球智能零售领域典型企业